UNIVERSITAS NEGERI PADANG
FACULTY OF MATHEMATICS AND NATURAL SCIENCES MATHEMATICS DEPARTMENT, MATHEMATICS STUDY PROGRAM Main Campus Universitas Negeri Padang. Jalan Prof. Dr. Hamka Air Tawar Padang, Sumatera Barat Telepon: +62 751 7053902, Fax: +62 7517055628
Email: humas@unp.ac.id
Bachelor of Science in Mathematics
MODULE HANDBOOK

Module name:	Probability Theory
Module level, if applicable:	Bachelor
Code:	MAT1.62.4003
Subheading, if applicable:	-
Classes, if applicable:	Probability Theory
Semester :	$4^{\text {th }}$ (fourth)
Module coordinator:	Head of Statistics Expertise Group
Lecturer(s):	Dr. Devni Prima Sari, S.Si., M.Si.,and Dr. Suherman, S.Pd., M.Si.
Language:	Indonesian Language and English
Classification within the curriculum:	Compulsory course in the second year ($4^{\text {th }}$ semester) Bachelor Degree
Teaching format / class hours per week during the semester:	a. Lectures : Problem Based Learning with methods such as expository, discussion, and drill. (4 x 50 minutes $=200$ minutes) b. Structured assignment : Weekly individual written assignment. (4×60 minutes $=240$ minutes $)$. c. Individual study (4×60 minutes $=240$ minutes).
Workload:	The total workload is 181.33 hours per semester, which consists of 200 minutes lectures, 240 minutes structured assignment, and 240 minutes of individual study. In total, there are 16 weeks per semester, including midterm and final exams.
Credit points:	$4 \mathrm{SKS}=6.04 \mathrm{ECTS}$
Prerequisites course(s):	Calculus

\(\left.$$
\begin{array}{|l|l|}\hline \text { Course outcomes: } & \begin{array}{l}\text { After taking this course the students have ability to: } \\
\text { CO1 Calculate probabilities by applying probability laws } \\
\text { and theoretical results. } \\
\text { CO2 Use the concept of random variables to solve } \\
\text { probability problems } \\
\text { CO3 Determine the probability function of random variable } \\
\text { and find a solution for it } \\
\text { CO 4 Prove the theorem about mathematical expectation } \\
\text { and limit theorem }\end{array} \\
\hline \text { Content: } & \begin{array}{l}\text { 1. Fundamental analysis concept of combinatory } \\
\text { 2. Axioms of probability } \\
\text { 3. Conditional probability and Independency }\end{array}
$$ \\
4. Discrete random variable \\

5. Continuous random variable\end{array}\right\}\)| 6. Jointly random variable |
| :--- |
| 7. Mathematical expectation |
| 8. Limit Theorem :Law of large number, Central Limit |
| Theorem |

	4. Young, G. A., \& Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge: Cambridge University Press. 5. Bain, L. J., Engelhardt, M. (1991). Introduction to Probability and Mathematical Statistics, $2^{\text {th }}$ ed Duxbury. 6. Ross, S. M. (2010). A first course in probability, $8^{\text {th }} \mathrm{ed}$. Pearson Prentice. 7. Ross, S. M. (2004). Introduction to Probability and Statistics for Engineers and Scientists, $3^{\text {th }}$ ed Elsevier.

PLO and CO Mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1									$\boldsymbol{\nu}$	
CO2									$\boldsymbol{\nu}$	
CO3										\checkmark
CO4				\checkmark						

