

UNIVERSITAS NEGERI PADANG
FACULTY OF MATHEMATICS AND NATURAL SCIENCES MATHEMATICS DEPARTMENT, MATHEMATICS STUDY PROGRAM
Main Campus Universitas Negeri Padang.
Jalan Prof. Dr. Hamka Air Tawar Padang, Sumatera Barat
Telepon: +62 751 7053902, Fax: +62 7517055628
Email: humas@unp.ac.id

Bachelor of Science in Mathematics
MODULE HANDBOOK

Module name:	Sampling Technique
Module level, if applicable:	Bachelor
Code:	MAT2.62.5005
Subheading, if applicable:	-
Classes, if applicable:	Sampling Technique
Semester:	$5^{\text {th }}$ (fifth)
Module coordinator:	Head of Statistics Expertise Group
Lecturer(s):	Dra. Minora Longgom, M.Si and Dra. Helma, M.Si.
Language:	Indonesian Language and English
Classification within the curriculum:	Compulsory course in third year ($5^{\text {th }}$ semester) Bachelor Degree
Teaching format / class hours per week during the semester:	a. Lectures : Guided Discovery Learning with methods such as expository, discussion, and drill. (3 x 50 minutes $=150$ minutes) b. Structured assignment : Weekly individual written assignment. (3×60 minutes $=180$ minutes). c. Individual study (3×60 minutes $=180$ minutes).
Workload:	Total workload is 136 hours per semester which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes self-study per week for 16 weeks.
Credit points:	3 sks $=4.53$ ECTS
Prerequisites course(s):	Elementary Statistics

$\left.\left.\begin{array}{|l|l|}\hline \text { Course outcomes: } & \begin{array}{l}\text { After taking this course the students have ability to: } \\ \text { CO. 1 Identify the definition of population and } \\ \text { sample, parameters and statistics and also the purpose } \\ \text { and the application of sampling in research } \\ \text { CO. 2 Distinguish probability sampling and non-probability } \\ \text { sampling } \\ \text { CO. 3 Analyze the usefulness of the normal distribution, bias } \\ \text { and its effects } \\ \text { CO. 4 Perform simple random sampling, proportion samples } \\ \text { and percentage samples } \\ \text { CO. 5 Use proportion sampling formula for discrete or } \\ \text { continuous data }\end{array} \\ \hline \text { Content: } & \begin{array}{l}\text { 1. Statistical theory concept and research design } \\ \text { Simple random sampling }\end{array} \\ \hline \text { 2. Sampling proportion and percentage of sample size } \\ \text { estimation }\end{array}\right\} \begin{array}{l}\text { 3. Stratified random sampling Systematic sampling }\end{array}\right\}$

PLO and CO Mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1						\checkmark				
CO2						\checkmark				
CO3									\checkmark	
CO4									\checkmark	
$\operatorname{CO5}$										\checkmark

