

## UNIVERSITAS NEGERI PADANG

FACULTY OF MATHEMATICS AND NATURAL SCIENCES MATHEMATICS DEPARTMENT, MATHEMATICS STUDY PROGRAM Main Campus Universitas Negeri Padang. Jalan Prof. Dr. Hamka Air Tawar Padang, Sumatera Barat Telepon: +62 751 7053902, Fax: +62 751 7055628 Email: humas@unp.ac.id

## **Bachelor of Science in Mathematics**

## **MODULE HANDBOOK**

| Module name:                                                      | Mathematical Biology                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Module level, if applicable:                                      | Bachelor                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Code:                                                             | MAT2.62.7011                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Subheading, if applicable:                                        | -                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Classes, if applicable:                                           | Mathematical Biology                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Semester:                                                         | 7 <sup>th</sup> (seventh)                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Module coordinator:                                               | Head of Applied Mathematics Expertise Group                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Lecturer(s):                                                      | Rara Sandhy Winanda, S.Pd., M.Sc.                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Language:                                                         | Indonesian Language and English                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Classification within the curriculum:                             | Elective course in the fourth year (7 <sup>th</sup> semester) Bachelor<br>Degree                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Teaching format / class<br>hours per week during<br>the semester: | <ul> <li>a. Lectures: Project Based Learning with methods such as expository, discussion, and presentation. (3 x 50 minutes = 150 minutes).</li> <li>b. Structured assignment: Weekly group written assignment. (3 x 60 minutes = 180 minutes).</li> <li>c. Individual study (3 x 60 minutes = 180 minutes)</li> </ul> |  |  |  |  |  |  |
| Workload:                                                         | The total workload is 136 hours per semester, which consists of 150 minutes lectures, 180 minutes structured activities, and 180 minutes of self-study. In total, there are 16 weeks per semester, including midterm and final exams.                                                                                  |  |  |  |  |  |  |
| Creditpoints:                                                     | 3 sks = 4.53 ECTS                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Prerequisites course(s):                                          | Ordinary Differential Equation and Partial Differential Equation                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

|                         | After taking this course, the students have the ability to:                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | CO1. Apply and extend classical models in mathematical                                                                                                       |
|                         | biology.                                                                                                                                                     |
| Course outcomes:        | CO2. Understand theoretical mathematics in the fields of                                                                                                     |
|                         | mathematical biology and statistics in a systematic and                                                                                                      |
|                         | coherent manner.                                                                                                                                             |
|                         | CO3. Use sophisticated mathematical techniques in the analysis                                                                                               |
|                         | of mathematical models in biology.                                                                                                                           |
|                         | CO4. Construct mathematical models for biological systems.                                                                                                   |
|                         | CO5. Apply critical thinking to address problems in biological systems.                                                                                      |
|                         | CO6. Effectively communicate across disciplinary boundaries.                                                                                                 |
| Content                 | 1. Interactions and population growth                                                                                                                        |
|                         | 2. Kinetics of Enzymes                                                                                                                                       |
|                         | 3. Nonlinear systems theory                                                                                                                                  |
|                         | 5. Other biological math problems (HIV-AIDS, TB, cancer,                                                                                                     |
|                         | malaria)                                                                                                                                                     |
| Study/ exam achievement | The final grade will be weighted as follows:                                                                                                                 |
|                         | The assessment consists of a final project (50%), a midterm exam (30%), and an assignment (20%).                                                             |
|                         | The final project entails group discussion of the topic,<br>reviewing the paper, analyzing it, giving an oral presentation,<br>and writing the final report. |
|                         | A midterm test is taken to examine whether students<br>understand the theory covered in the half-semester course.                                            |
|                         | The group gives a weekly assignment to debate open questions in Mathematical Biology.                                                                        |
| Forms of media:         | White Board, laptop, Projector, e-learning via                                                                                                               |
|                         | elearning2.unp.ac.id, and zoom meeting.                                                                                                                      |

|             | 1. | Fred Brauer, and Carlos Castillo-Chavez, 2012,         |
|-------------|----|--------------------------------------------------------|
| Literature: |    | Mathematical Models in Population Biology and          |
|             |    | Epidemiology, 2nd Ed, Springer Verlag, New York.       |
|             | 2. | B. Barnes, and G.R. Fulford, 2008, Mathematical        |
|             |    | Modelling with Case Studies, 2nd Ed, Taylor & Francis, |
|             |    | London.                                                |
|             | 3. | Ronald W. Shonkwiler, James Herod (auth.)-Mathematical |
|             |    | Biology_An Introduction with Maple and Matlab-         |
|             |    | Springer-Verlag New York (2009)                        |
|             | 4. | Murray J.DMathematical biology 1. An introduction-     |
|             |    | Springer (2002)                                        |
|             |    |                                                        |

## PLO and CO mapping

|     | PLO1 | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 | PLO8 | PLO9 | PLO10 |
|-----|------|------|------|------|------|------|------|------|------|-------|
| CO1 |      |      | 1    |      |      |      |      |      |      |       |
| CO2 |      |      | 1    |      |      |      |      |      |      |       |
| CO3 |      |      |      |      |      |      |      |      | 1    |       |
| CO4 |      |      | 1    |      |      |      |      |      |      |       |
| CO5 |      | 1    |      |      |      |      |      |      |      |       |
| CO6 |      |      |      |      |      |      |      | ~    |      |       |