UNIVERSITAS NEGERI PADANG
FACULTY OF MATHEMATICS AND NATURAL SCIENCES MATHEMATICS
DEPARTMENT, MATHEMATICS STUDY PROGRAM
Main Campus Universitas Negeri Padang.
Jalan Prof. Dr. Hamka Air Tawar Padang, Sumatera Barat
Telepon: +62 7517053902 , Fax: +62 7517055628
Email: humas@unp.ac.id

Bachelor of Mathematics
MODULE HANDBOOK

Module name:	Mathematical Statistics
Module level, if applicable:	Bachelor
Code:	MAT1.62.5003
Sub-heading, if applicable:	-
Classes, if applicable:	Mathematical Statistics
Semester:	$5^{\text {th }}$ (fifth)
Module coordinator:	Head of Statistics Expertise Group
Lecturer(s):	Dr. Suherman, M.Pd., Dra. Helma, M.Si, and Dra. Dewi Murni, M.Si.
Language:	Indonesian Language and English
Classification within the curriculum:	Compulsory course in the third year ($5^{\text {th }}$ semester) Bachelor Degree
Teaching format / class hoursperweekduring the semester:	a. Lectures : Cooperative learning with methods such as expository, drill, and discussion. $(4 \times 50$ minutes $=200$ minutes) b. Structured assignment : Weekly individual written assignment. (4×60 minutes $=240$ minutes $)$. c. Individual study. (4×60 minutes $=240$ minutes $)$.
Workload:	Total workload is 181,33 hours per semester, which consists of 200 minutes lectures, 240 minutes structured activities, and 180 minutes of self-study per semester, including mid exam and final exam.
Creditpoints:	$4 \mathrm{SKS}=6.04 \mathrm{ECTS}$
Prerequisites course(s):	Probability theory and advanced calculus
Course outcomes:	After taking this course the students have ability to: CO1. Predict the type of distribution from the data provided CO2. Analyze unbiased, efficiency, consistency, and sufficiency of an estimator using moments, maximum likelihood, and bayesian estimation methods CO3. Interpret the results of hypothesis testing

Content:	1. Special distribution function 2. Transformation of random variable 3. sampling distribution
	4. Theory of Parameter Estimation 5. Theory of hypothesis testing
Study / exam achievements:	The final grade will be weighted as follows: The assessment consists of a final exam (35 \%), a midterm exam (35\%), individual reports (20 \%), and class activities: participation, attitude, and presence (10\%).
Forms of media:	The final and midterm exams are essay tests with a closed book (120 minutes). Individual reports are completed in class through exercises.
Literature:White Board, laptop, Projector, e-learning via elearning2.unp.ac.id, and zoom meeting.	
Main: 1. Hogg, R. V., McKean, J. W., and Craig, A. T. 2019. Introduction to Mathematical Statistics, Eighth Edition. Pearson: USA.	
2. Bain, L.J and Engelhart, M. Introduction To Probability	
and Mathematical Statistics, Duxbury Press, 1992.	

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10
CO1						\checkmark				
CO2			\checkmark							
CO3										\checkmark

